Automatic differentiation
in Julia

Miles Lubin and Jarrett Revels
17th Euro AD Workshop
August 20, 2015
Why Julia?

- Fast like C++, high level like Python and Matlab
 - That’s the idea at least
- Solves the “multiple-language problem” in technical computing
Julia timeline

- Julia publicly announced, 2012
 - Julia 0.1 release, February 2013
 - Julia 0.2 release, November 2013
- 1st annual JuliaCon held in Chicago, 2014
 - Julia 0.3 release, August 2014
- 2nd annual JuliaCon held at MIT, 2015
- Julia 0.4 release, Soon™
It’s not 1.0, but people find it useful...

Total number of packages by Julia version
JuliaDiff is a:

- **Web page**
- **Github organization**

to help organize the development of AD tools in Julia.

Most people interact with JuliaDiff through:

```julia
optimize(f, method=:l_bfgs, autodiff=true)
```
function rosenbrock100(x::Vector)
 out = zero(eltype(x))
 for i in 1:div(length(x),2)
 out += 100*(x[2i-1]^2 - x[2i])^2 + (x[2i-1]-1)^2
 end
 out
end

@time optimize(rosenbrock100, zeros(100),
 method = :l_bfgs, iterations=21)
elapsed time: 0.003834211 seconds
Value of Function at Minimum: 3.419262

@time optimize(rosenbrock100, zeros(100),
 method = :l_bfgs, iterations=21, autodiff=true)
elapsed time: 0.002318992 seconds
Value of Function at Minimum: 0.000000
Outline

- Introduction to technical features of Julia interesting for AD
- ForwardDiff package
- JuMP modeling language for optimization
Follow along

https://juliabox.org/
https://github.com/mlubin/EuroAD2015
JuMP - a modeling language for linear and nonlinear optimization

\[
\min \quad f(x) \\
\text{s.t.} \quad g(x) \leq 0 \\
\quad h(x) = 0
\]

- All functions given as closed-form algebraic expressions
State of the art

Commercial tools:
- AMPL (Gay, Fourer)
 - De-facto standard .nl exchange format
- GAMS

Open source:
- Pyomo
 - Writes to .nl format, doesn’t implement AD
- YALMIP
 - Not large scale, no hessians
- CasADi
What JuMP looks like...

```julia
m = Model(solver=IpoptSolver())
@defVar(m, x[1:n])
@setNLOjective(m, Min, sum{ exp(x[i]^2), i = 1:n} )
@addNLConstraint(m,
    prod{ x[i], i=1:n} <= 1)
solve(m)
```
JuMP is a domain-specific language

```plaintext
myset = ["cat", "dog"]
@defVar(m, x[myset])
@addNLConstraint(m,
    sin(x["dog"]) <= 0.5)
```

Useful for indexing over:
- Edges in a graph
- Types of widgets to produce
- ...
JuMP is a domain-specific language

@defVar(m, l[i] \leq x[i=1:N] \leq 2i)
@defVar(m, t \geq 0)
@addNLConstraint(m, limit[i=(3:N-1)],
\quad \exp(x[i]) \leq t)

Equivalent to
for i in 3:N-1
\quad @addNLConstraint(m, \exp(x[i]) \leq t)
end
Easy to query derivatives

```python
m = Model(); @defVar(m, x); @defVar(m, y)
@setNLObjective(m, Min, sin(x) + sin(y))
values = [2.0, 3.0]
d = JuMPNLPEvaluator(m); initialize(d, [:Grad])
objval = eval_f(d, values)
∇f = zeros(2)
eval_grad_f(d, ∇f, values)
# ∇f == [cos(2.0), cos(3.0)]
```
Benchmarks

- Build model in memory, prepare AD
 - Model generation time
- Give to Ipopt for 5 iterations, report time spent in NLP evaluations (incl. gradients, jacobians, hessian of the lagrangian)

https://github.com/mlubin/JuMPSupplement
Model generation time (sec.)

<table>
<thead>
<tr>
<th>Instance</th>
<th>JuMP</th>
<th>Commercial</th>
<th>Open-source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AMPL</td>
<td>GAMS</td>
</tr>
<tr>
<td>cnlbeam-5</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>cnlbeam-50</td>
<td>11</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>cnlbeam-500</td>
<td>28</td>
<td>21</td>
<td>34</td>
</tr>
<tr>
<td>acpower-1</td>
<td>22</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>acpower-10</td>
<td>28</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>acpower-100</td>
<td>54</td>
<td>16</td>
<td>471</td>
</tr>
</tbody>
</table>
Derivative evaluation time (sec.)

<table>
<thead>
<tr>
<th>Instance</th>
<th>JuMP</th>
<th>AMPL</th>
<th>GAMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>clnlbeam-5</td>
<td>0.03</td>
<td>0.03</td>
<td>0.09</td>
</tr>
<tr>
<td>clnlbeam-50</td>
<td>0.39</td>
<td>0.34</td>
<td>0.74</td>
</tr>
<tr>
<td>clnlbeam-500</td>
<td>4.72</td>
<td>3.40</td>
<td>15.69</td>
</tr>
<tr>
<td>acpower-1</td>
<td>0.08</td>
<td>0.02</td>
<td>0.19</td>
</tr>
<tr>
<td>acpower-10</td>
<td>0.81</td>
<td>0.35</td>
<td>5.07</td>
</tr>
<tr>
<td>acpower-100</td>
<td>9.28</td>
<td>3.42</td>
<td>424.89</td>
</tr>
</tbody>
</table>
What do we do?

● **sum{}** and **prod{}** translated to accumulation loops
 ○ AMPL flattens out

● **Apply Reverse-mode AD to this expression graph**
 ○ Recompute instead of storing intermediate terms inside loops
 ○ Fuse reverse and forward mode of top-level loops (thanks Paul)
What do we do?

- Applying reverse mode, use Julia’s code generation facilities to **generate and compile a function at runtime** which evaluates the gradient
- This gives us gradients and Jacobians
From gradients to Hessians

- Apply forward-mode to gradient functions to evaluate Hessian-vector product
- Acyclic graph coloring heuristic of Gebremedhin et. al (2009)
Discussion

• Loops versus flattened out expression graphs
 ○ Algebraic simplifications? Presolve?
 ○ Composability
Thanks!