Automatic Differentiation in the Devito Domain-Specific Language

Navjot Kukreja1a

Also:
Jan Hückelheim1 Fabio Luporini1 Sri Hari Krishna Narayanan2 Gerard J. Gorman1 Paul Hovland2

October 18, 2019

1Department of Earth Science and Engineering, Imperial College London, UK
2Argonne National Laboratory, Lemont, IL, USA

aThis work was funded by the Intel Parallel Computing Centre at Imperial College London and EPSRC EP/R029423/1
Seismic Imaging - Motivation

Full Waveform Inversion (FWI): A PDE-constrained optimisation problem to understand the earth

Figure 1: Offshore seismic survey

Source: http://www.open.edu/openlearn/science-maths-technology/science/environmental-science/earths-physical-resources/petroleum/content-section-3.2.1
Problem Statement - the Forward Problem

Given source signal q_s (at a given location) and the earth’s physical parameters m, the wave propagation can be simulated using the equation:

$$
\begin{align*}
& m \frac{d^2 u(x,t)}{dt^2} - \nabla^2 u(x,t) = q_s \\
& u(.,0) = 0 \\
& \frac{du(x,t)}{dt} \bigg|_{t=0} = 0
\end{align*}
$$

(1)

The function u describes the entire wavefield. The signal received at the specific (given) receiver locations could be seen as:

$$
d_{sim} = P_r u = P_r A(m)^{-1} P_s^T q_s
$$

(2)

where A is the action of the equation 1, P_r is the receiver restriction operator, and P_s is the source projection operator.
FWI can be defined as Virieux and Operto [2009]:

\[
\min_{\bm{m}} \Phi_s(\bm{m}) = \frac{1}{2} \left\| \bm{d}_{\text{sim}} - \bm{d}_{\text{obs}} \right\|_2^2
\]

(3)

The gradient of the objective function \(\Phi_s(\bm{m}) \) with respect to the model parameter \(\bm{m} \) is given by Plessix [2006]:

\[
\nabla \Phi_s(\bm{m}) = \sum_{t=1}^{n_t} \bm{u}[t] \bm{v}_{tt}[t]
\]

(4)

where \(\bm{u}[t] \) is the wavefield in the forward problem and \(\bm{v}_{tt}[t] \) is the second-derivative of the adjoint (reverse) field.
Why does it need to be fast?

• Large number of operations: \(\approx 6000\) FLOPs per loop iteration of a 16th order TTI kernel

• Realistic problems have large grids: \(1580 \times 1580 \times 1130 \approx 2.82\) billion points (SEAM benchmark \(^1\))

• \(2.82 \times 10^9 \times 6000 \times 3000(t) \times 2\) (forward-reverse) \(\approx 10^{17}\) FLOPs per shot

• Typically \(\approx 30000\) shots (\(\approx 3 \times 10^{21} = 3 \times 10^9\) TFLOPs per FWI iteration)

• Typically \(\approx 15\) FWI iterations (\(\approx 4.6 \times 10^{22} = 46\) billion TFLOPs total)

\(\approx\) days/weeks/months even on supercomputers

\(^1\)
Traditional Approach

\[
\begin{aligned}
\frac{m}{\partial t^2} u(x,t) - \nabla^2 u(x,t) &= q_s \\
\left. \frac{\partial u(x,t)}{\partial t} \right|_{t=0} &= 0 \\
u(.,0) &= 0
\end{aligned}
\]

void finite_difference_solver(...) {
 //...impenetrable "performance_optimised" code
}
<table>
<thead>
<tr>
<th>Computer science</th>
<th>Geophysics</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Fast code is complex</td>
<td></td>
</tr>
<tr>
<td>• Loop blocking</td>
<td></td>
</tr>
<tr>
<td>• OpenMP clauses</td>
<td></td>
</tr>
<tr>
<td>• Vectorization - intrinsics</td>
<td></td>
</tr>
<tr>
<td>• Memory - alignment, NUMA</td>
<td></td>
</tr>
<tr>
<td>• Common sub-expression elimination</td>
<td></td>
</tr>
<tr>
<td>• ADD/MUL balance</td>
<td></td>
</tr>
<tr>
<td>• Denormal numbers</td>
<td></td>
</tr>
<tr>
<td>• Elemental functions</td>
<td></td>
</tr>
<tr>
<td>• Non temporal stores</td>
<td></td>
</tr>
<tr>
<td>• Fast code is platform dependent</td>
<td></td>
</tr>
<tr>
<td>• Intrinsics</td>
<td></td>
</tr>
<tr>
<td>• CUDA/OpenCL</td>
<td></td>
</tr>
<tr>
<td>• Data layouts</td>
<td></td>
</tr>
<tr>
<td>• Fast code is error prone</td>
<td></td>
</tr>
<tr>
<td>• Change of discretizations - Numerical analysis</td>
<td></td>
</tr>
<tr>
<td>• Change of physics</td>
<td></td>
</tr>
<tr>
<td>• Anisotropy - VTI/TTI</td>
<td></td>
</tr>
<tr>
<td>• Elastic equation</td>
<td></td>
</tr>
<tr>
<td>• Boundary conditions</td>
<td></td>
</tr>
</tbody>
</table>

Not everyone is a polymath
Why automated

Computer science

• Fast code is complex
 • Loop blocking
 • OpenMP clauses
 • Vectorization - intrinsics
 • Memory - alignment, NUMA
 • Common sub-expression elimination
 • ADD/MUL balance
 • Denormal numbers
 • Elemental functions
 • Non temporal stores

• Fast code is platform dependent
 • Intrinsics
 • CUDA/OpenCL
 • Data layouts

• Fast code is error prone

Geophysics

• Change of discretizations - Numerical analysis

• Change of physics
 • Anisotropy - VTI/TTI
 • Elastic equation

• Boundary conditions

Not everyone is a polymath
Raising the abstraction with Devito

\[
\begin{cases}
 m \frac{d^2 u(x,t)}{dt^2} - \nabla^2 u(x,t) = q_s \\
u(., 0) = 0 \\
\frac{du(x,t)}{dt} |_{t=0} = 0
\end{cases}
\]

```python
pde = m * u.dt2 - u.laplace
stencil = Eq(u.forward, solve(pde, u.forward)[0])
fwd_op = Operator([stencil], ...)
```

```python
void finite_difference_solver(...) {
    //...impenetrable "performance Optimised" code
}
```
Under the hood of Devito

Equations lowering
Input Equations → Lowered Equations

Local analysis

Clustering
Lowered Equations → Clusters

Symbolic optimization [DSE]
Clusters → Clusters

IET construction
Clusters → IET [abstract syntax tree]

IET analysis
IET → IET

IET optimization [DLE/YLE]
IET → IET

Synthesis
IET → CGen AST → C/C++ string

JIT Compilation
C/C++ string → kernel.c → kernel.so

Declarations
Instrumentation for profiling
Header files, globals, macros, …

Enforcement of iteration direction
Grouping

Invariants extraction
Aliases detection
Common sub-expressions elimination
Factorization

Loop blocking
SIMD vectorization
Shared-memory (hierarchical) parallelism
Low-level optimization (e.g., sw prefatching)
Figure 3: Roofline plot of achieved performance on Skylake 8180 for different discretisations of the Acoustic wave equation
The Gradient again

\[\nabla \Phi_s(m) = \sum_{t=1}^{n_t} u[t] v_{tt}[t] \]

Hand-derived adjoint equation

Can we automate this?
Finite difference generates a stencil

\[
pde = m \times u.\text{dt2} - u.\text{laplace}
\]

\[
stencil = Eq(u.\text{forward}, \text{solve(pde, u.\text{forward})}[0])
\]

\[
fwd_op = \text{Operator([stencil], ...)}
\]

```c
void finite_difference_solver(...) {
    ...
    for (int t=t_m; t<t_M; t++) {
        for (int x=x_m; x<x_M; x++) {
            u[t+1][x] = c1*u[t][x-1] + c2*u[t][x] + c3*u[t][x+1] + c4*u[t-1][x];
        }
    }
    ...
}
```
Figure 4: Finite difference generates a 3/4 dimensional stencil. The radius depends on the order of discretisation
AD on a Stencil
Figure 5: AD on a gather produces a scatter
Figure 6: The Stencil is originally a gather
Figure 7: AD converts it to a scatter
1D Stencil Example

Figure 8: The scatter can be split into individual updates
Figure 9: Shift the indices so every update is writing to the ith element.
Figure 10: The intersection of the three iteration spaces can be combined into a single loop. The update inside the loop looks like a stencil again. The left and right remainder sections have “partial” stencils.
PerforAD

• Extends naturally to n dimensions
• Does not make any assumptions about the nature of the stencil
• Holds even when multiple stencils being applied to different parts of the domain
• Does not require zero-padding
Where should PerforAD live?

- Equations lowering
 - Input Equations → Lowered Equations

- Local analysis

- Clustering
 - Lowered Equations → Clusters

- Symbolic optimization [DSE]
 - Clusters → Clusters

- IET construction
 - Clusters → IET [abstract syntax tree]

- IET analysis
 - IET → IET

- IET optimization [DLE/YLE]
 - IET → IET

- Synthesis
 - IET → CGen AST → C/C++ string

- JIT Compilation
 - C/C++ string → kernel.c → kernel.so

- Enforcements of iteration direction
 - Grouping

- Invariants extraction
 - Aliases detection
 - Common sub-expressions elimination
 - Factorization

- Declarations
 - Instrumentation for profiling
 - Header files, globals, macros, …

- Enforcement of iteration direction

- Loop blocking
 - SIMD vectorization
 - Shared-memory (hierarchical) parallelism
 - Low-level optimization (e.g., sw prefetching)
Figure 12: Speedups for the wave equation solver on a Broadwell processor, using up to 12 threads. The Tapenade-generated code with manual parallelisation does not scale at all. The primal and PerforAD-generated adjoint benefit from using all 12 cores.
Figure 13: Absolute runtimes for wave equation primal and adjoint stencils and conventional adjoints in serial, as well as best observed primal and adjoint stencil run time in parallel. The best-observed performance of adjoint stencils was with 12 threads and is faster than the conventional adjoint by a factor of $3.4\times$.
Automatic/Manual Differentiation produces code that has a very high requirement of memory.

Previously we introduced PyRevolve, an execution environment that implements memory-compute tradeoffs through:

- Revolve\(^1\)-based checkpoint-recomputation
- Lossy/Lossless Compression
- Combination of the above two

\(^1\) Griewank and Walther [2000]
Future Work

- Integrate this in Devito so it works for complex stencils (e.g. TTI)
- Implement AD for sources/receivers (high-level)
Thank you

Questions?
