Using Abs-Linearization to Determine Local Minima of Piecewise Linear Constrained Programs

Timo Kreimeier1, Andreas Griewank2, Andrea Walther1

01.-02.07.2019

Euro-AD Workshop London

1Universität Paderborn
2Yachay Tech University
Table of Contents

Piecewise Linear Optimization Problems

Minimization Problem and Active Signature Method

Numerical Example

Summary and Outlook
Piecewise Linear Optimization Problems

\[
\min_{x \in \mathbb{R}^n} \quad y := \varphi(x)
\]
\[
\text{s.t.} \quad G(x) = 0
\]
\[
H(x) \leq 0,
\]
where

\[
\varphi : \mathbb{R}^n \to \mathbb{R}
\]
\[
G : \mathbb{R}^n \to \mathbb{R}^m
\]
\[
H : \mathbb{R}^n \to \mathbb{R}^p
\]
are all continuous and piecewise linear functions.
Piecewise Linear Optimization Problems

\[\min_{x \in \mathbb{R}^n} \quad y := \varphi(x) \]

s.t. \quad G(x) = 0 \quad \text{and} \quad H(x) \leq 0,

where

- \(\varphi : \mathbb{R}^n \to \mathbb{R} \)
- \(G : \mathbb{R}^n \to \mathbb{R}^m \)
- \(H : \mathbb{R}^n \to \mathbb{R}^p \)

are all continuous and piecewise linear functions.

Figure:
\[\varphi : \mathbb{R}^2 \to \mathbb{R}, (x_1, x_2) \mapsto 0.3|x_1| + ||x_1| + x_2| + 1 \]
Reformulate Functions in Abs-Linear Form

The general Abs-Linear Form for a given function y and constraint functions:

$$Mz = c_z + Zx + L|z|, \quad y = c_y + a^\top x + b^\top |z|,$$

$$G(x, |z|) = g + Ax + B|z|, \quad H(x, |z|) = h + Cx + D|z|$$

▶ $x \in \mathbb{R}^n$ is the vector of independent variables
▶ $z \in \mathbb{R}^s$ the vector of switching variables
▶ $c_z \in \mathbb{R}^s$, $c_y \in \mathbb{R}$, $g \in \mathbb{R}^m$, $h \in \mathbb{R}^p$ are constant vectors
▶ $Z \in \mathbb{R}^{s \times n}$, $L, M \in \mathbb{R}^{s \times s}$ are matrices, where L is strictly lower triangular and M unit lower triangular
▶ $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{m \times s}$, $C \in \mathbb{R}^{p \times n}$, $D \in \mathbb{R}^{p \times s}$ are matrices
Reformulate Functions in Abs-Linear Form

The general Abs-Linear Form for a given function y and constraint functions:

$$Mz = c_z + Zx + L|z|,$$
$$y = c_y + a^\top x + b^\top |z|,$$
$$G(x, |z|) = g + Ax + B|z|,$$
$$H(x, |z|) = h + Cx + D|z|$$

- $x \in \mathbb{R}^n$ is the vector of independent variables
- $z \in \mathbb{R}^s$ the vector of switching variables
- $c_z \in \mathbb{R}^s$, $c_y \in \mathbb{R}$, $g \in \mathbb{R}^m$, $h \in \mathbb{R}^p$ are constant vectors
Reformulate Functions in Abs-Linear Form

The general Abs-Linear Form for a given function y and constraint functions:

\[Mz = c_z + Zx + L|z|, \]
\[y = c_y + a^\top x + b^\top |z|, \]
\[G(x, |z|) = g + Ax + B|z|, \]
\[H(x, |z|) = h + Cx + D|z| \]

- $x \in \mathbb{R}^n$ is the vector of independent variables
- $z \in \mathbb{R}^s$ the vector of switching variables
- $c_z \in \mathbb{R}^s, c_y \in \mathbb{R}, g \in \mathbb{R}^m, h \in \mathbb{R}^p$ are constant vectors
- $Z \in \mathbb{R}^{s \times n}, L, M \in \mathbb{R}^{s \times s}$ are matrices, where L is strictly lower triangular and M unit lower triangular
- $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{m \times s}, C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times s}$ are matrices
Abs-Linear Form:

\[Mz = c_z + Zx + L|z|, \]
\[y = c_y + a^T x + b^T |z|, \]
\[G(x, |z|) = g + Ax + B|z|, \]
\[H(x, |z|) = h + Cx + D|z| \]
Abs-Linear Form:

\[Mz = c_z + Zx + L|z|, \]
\[y = c_y + a^\top x + b^\top |z|, \]
\[G(x, |z|) = g + Ax + B|z|, \]
\[H(x, |z|) = h + Cx + D|z| \]

Example:

\[y = \varphi(x) = 0.3|x_1| + |x_1| + x_2| + 1, \]
\[G(x) = |x_1| - 1, \]
\[H(x) = -|x_1| - \frac{1}{2}|x_2| + 2, \]
Abs-Linear Form:

\[
Mz = c_z + Zx + L|z|, \\
y = c_y + a^\top x + b^\top |z|, \\
G(x, |z|) = g + Ax + B|z|, \\
H(x, |z|) = h + Cx + D|z|
\]

Example:

\[
y = \varphi(x) = 0.3|x_1| + |x_1| + x_2 + 1, \\
G(x) = |x_1| - 1, \\
H(x) = -|x_1| - \frac{1}{2}|x_2| + 2,
\]
Abs-Linear Form:

\[Mz = c_z + Zx + L|z|, \]

\[y = cy + a^\top x + b^\top |z|, \]

\[G(x, |z|) = g + Ax + B|z|, \]

\[H(x, |z|) = h + Cx + D|z| \]

Example:

\[y = \varphi(x) = 0.3|x_1| + |x_1| + x_2 + 1, \]

\[G(x) = |x_1| - 1, \]

\[H(x) = -|x_1| - \frac{1}{2}|x_2| + 2, \]
Abs-Linear Form:

\[Mz = c_z + Zx + L|z|, \]
\[y = c_y + a^T x + b^T |z|, \]
\[G(x, |z|) = g + Ax + B|z|, \]
\[H(x, |z|) = h + Cx + D|z| \]

Example:

\[y = \varphi(x) = 0.3|x_1| + ||x_1| + x_2| + 1, \]
\[G(x) = |x_1| - 1, \]
\[H(x) = -|x_1| - \frac{1}{2}|x_2| + 2, \]
Decomposition of \mathbb{R}^n into Polyhedrals

- For each $x \in \mathbb{R}^n$ define the **signature vector** and matrix

$$\sigma = \sigma(x) = \text{sgn}(z(x)) \in \{-1, 0, 1\}^s$$

and

$$\Sigma = \Sigma(x) = \text{diag}(\sigma(x))$$
Decomposition of \mathbb{R}^n into Polyhedrals

- For each $x \in \mathbb{R}^n$ define the **signature vector** and matrix

 \[
 \sigma = \sigma(x) = \text{sgn}(z(x)) \in \{-1, 0, 1\}^s \quad \text{and} \quad \Sigma = \Sigma(x) = \text{diag}(\sigma(x))
 \]

- For a fixed σ define **signature domains**

 \[
 P_\sigma = \{ x \in \mathbb{R}^n : \text{sgn}(z(x)) = \sigma \} \subset \bar{P}_\sigma = \{ x \in \mathbb{R}^n : \Sigma z(x) = |z(x)| \}
 \]
Example: Decomposition of \mathbb{R}^2
Minimization Problem

For each fixed signature vector $\sigma \in \{-1, 0, 1\}^s$ one obtains the quadratic optimization problem

$$\min_{x,z} \quad a^T x + b^T \Sigma z + \frac{1}{2} x^T Q x$$

s.t. $M|\Sigma|z = c + Zx + L\Sigma z,$

$|\tilde{\Sigma}|z = 0,$

$\Sigma z \geq 0,$

$g + Ax + B|z| = 0$

$h +Cx + D|z| \leq 0$

where $|\tilde{\Sigma}| = I - |\Sigma|$ is the complementary orthogonal projection to $|\Sigma|$.
Set up the System Matrix

Apply KKT theory to get the symmetric linear system

\[
\begin{bmatrix}
Q & 0 & Z^\top & A^\top & C^\top \Omega \\
0 & \Sigma L^\top & -\Sigma M^\top & \Sigma B^\top & \Sigma D^\top \Omega \\
Z & L\Sigma - M\Sigma & 0 & 0 & 0 \\
A & B\Sigma & 0 & 0 & 0 \\
\Omega C & \Omega D\Sigma & 0 & 0 & \bar{\Omega}
\end{bmatrix}
\begin{bmatrix}
x \\
z \\
\lambda \\
\delta \\
\omega
\end{bmatrix}
=
\begin{bmatrix}
a \\
\Sigma b \\
c \\
g \\
\Omega h
\end{bmatrix},
\]

where \(\Omega = \text{sgn}(\omega) \)
Set up the System Matrix

Apply KKT theory to get the symmetric linear system

\[
\begin{bmatrix}
Q & 0 & Z^T & A^T & C^T\Omega \\
0 & |\Sigma| & \Sigma L^T - |\Sigma|M^T & \Sigma B^T & \Sigma D^T\Omega \\
Z & L\Sigma - M|\Sigma| & 0 & 0 & 0 \\
A & B\Sigma & 0 & 0 & 0 \\
\Omega C & \Omega D\Sigma & 0 & 0 & \tilde{\Omega}
\end{bmatrix}
\begin{bmatrix}
x \\
z \\
\lambda \\
\delta \\
\omega
\end{bmatrix}
=
\begin{bmatrix}
a \\
\Sigma b \\
c \\
g \\
\Omega h
\end{bmatrix},
\]

where \(\Omega = \text{sgn}(\omega) \) and \(\tilde{\Omega} = I - \Omega \) as projection onto the active inequality constraints.
Set up the System Matrix

Apply KKT theory to get the symmetric linear system

\[
\begin{bmatrix}
Q & 0 & Z^T & A^T & C^T \Omega \\
0 & \Sigma L^T - |\Sigma|M^T & \Sigma B^T & \Sigma D^T \Omega \\
Z & L\Sigma - M|\Sigma| & 0 & 0 & 0 \\
A & B\Sigma & 0 & 0 & 0 \\
\Omega C & \Omega D\Sigma & 0 & 0 & \tilde{\Omega}
\end{bmatrix}
\begin{bmatrix}
x \\
z \\
\lambda \\
\delta \\
\omega
\end{bmatrix}
= -
\begin{bmatrix}
a \\
\Sigma b \\
c \\
g \\
\Omega h
\end{bmatrix},
\]

where \(\Omega = \text{sgn}(\omega) \) and \(\tilde{\Omega} = I - \Omega \) as projection onto the active inequality constraints.

Yields also the optimality condition

\[
0 \leq \mu^T |\tilde{\Sigma}| := b^T |\tilde{\Sigma}| + \lambda^T L|\tilde{\Sigma}| - \lambda^T M\tilde{\Sigma} + \delta^T B|\tilde{\Sigma}| + \omega^T D|\tilde{\Sigma}|,
\]

where \(\tilde{\Sigma} = I - |\Sigma| \).
Compute Step Length

- Make a step from current iterate x^k in direction x
 - step length from switching variable

$$\beta^z = \inf_{1 \leq i \leq s} \left\{ \beta^z_i \equiv \frac{-z^k_i}{z_i - z^k_i} \left| z_i^k(z_i - z^k_i) < 0 \right\} \in [0, \infty]$$
Compute Step Length

- Make a step from current iterate x^k in direction x
 - step length from switching variable

\[\beta_j^z = \inf_{1 \leq i \leq s} \left\{ \beta_i^z \equiv \frac{-z_i^k}{z_i - z_i^k} \left| z_i^k(z_i - z_i^k) < 0 \right\} \in]0, \infty] \]

- Compute new point via

\[\tilde{x} = (1 - \beta_j^z)x^k + \beta_j^z x \]
\[\tilde{z} = (1 - \beta_j^z)z^k + \beta_j^z z \]
Compute Step Length

- Make a step from current iterate x^k in direction x
 - step length from switching variable
 \[
 \beta^z_j = \inf_{1 \leq i \leq s} \left\{ \beta^z_i \equiv \frac{-z^k_i}{z_i - z^k_i} \left| z^k_i (z_i - z^k_i) < 0 \right| \right\} \in]0, \infty]
 \]

- Compute new point via
 \[
 \tilde{x} = (1 - \beta^z_j) x^k + \beta^z_j x \\
 \tilde{z} = (1 - \beta^z_j) z^k + \beta^z_j z
 \]

- Make a step from current iterate x^k in direction \tilde{x}
 - step length from constraints
 \[
 \beta^H_j = \inf_{1 \leq i \leq p} \left\{ \beta^H_i \equiv \frac{H^k_i}{H^k_i - H_i(\tilde{x}, \Sigma \tilde{z})} \left| (H_i(\tilde{x}, \Sigma \tilde{z}) - H^k_i) H^k_i < 0 \right| \right\} .
 \]
Algorithm:
Active Signature Method for Constrained Abs-Linear Minimization

Given: Problem in Abs-Linear Form, feasible starting point x and associated z and σ
Algorithm:
Active Signature Method for Constrained Abs-Linear Minimization

Given: Problem in Abs-Linear Form, feasible starting point x and associated z and σ

Procedure: while optimality condition is violated do
Algorithm:
Active Signature Method for Constrained Abs-Linear Minimization

Given: Problem in Abs-Linear Form, feasible starting point x and associated z and σ

Procedure: while optimality condition is violated do

- Step 1: Set up and solve linear system of equations
Algorithm:
Active Signature Method for Constrained Abs-Linear Minimization

Given: Problem in Abs-Linear Form, feasible starting point x and associated z and σ

Procedure: while optimality condition is violated do

- Step 1: Set up and solve linear system of equations
- Step 2: Compute step length and if necessary add or drop kinks or constraints
Algorithm:
Active Signature Method for Constrained Abs-Linear Minimization

Given: Problem in Abs-Linear Form, feasible starting point x, and associated z and σ

Procedure: while optimality condition is violated do
 ▶ Step 1: Set up and solve linear system of equations
 ▶ Step 2: Compute step length and if necessary add or drop kinks or constraints
until problem solved
Numerical Example

Problem:

\[\min \ 0.3|x_1| + |x_1| + x_2 + 1 \]
Numerical Example

Problem:

$$\begin{align*}
\text{min} & \quad 0.3 |x_1| + |x_1| + x_2| + 1 \\
\text{s.t.} & \quad |x_1| + \frac{1}{2} |x_2| \geq 2
\end{align*}$$
Numerical Example

Problem:

\[\begin{align*}
\min & \quad 0.3|x_1| + \frac{3}{2}|x_1 + x_2| + 1 \\
\text{s.t.} & \quad |x_1| + \frac{1}{2}|x_2| \geq 2 \\
& \quad |x_1| = 1
\end{align*} \]
Summary

- Consider optimization problems with piecewise linear objective function and piecewise linear constraints
- Rewrite a function in Abs-Linear Form
- Set up and solve linear system of equations

Outlook

- Prove convergence results
- Check convergence rate
- Extend approach to SALMIN (successive abs-linear minimization) to cover piecewise smooth functions
Summary

▶ Consider optimization problems with piecewise linear objective function and piecewise linear constraints
▶ Rewrite a function in Abs-Linear Form
▶ Set up and solve linear system of equations

Outlook

▶ Prove convergence results
▶ Check convergence rate
Summary

▶ Consider optimization problems with piecewise linear objective function and piecewise linear constraints
▶ Rewrite a function in Abs-Linear Form
▶ Set up and solve linear system of equations

Outlook

▶ Prove convergence results
▶ Check convergence rate
▶ Extend approach to SALMIN (successive abs-linear minimization) to cover piecewise smooth functions