Cheaper Adjoins by
Reversing Address Computations

Jean Utke, Uwe Naumann, Laurent Hascoët

ANL, RWTH, INRIA

Euro-AD workshop, Aachen
December 2006
Motivation

\[
\begin{align*}
\text{do } i &= 1, N \\
PUSH(j) \\
j &= IND(i) \\
... \\
...(j) ... \\
......(j) ... \\
...(j) \\
end \ do
\end{align*}
\]

\[
\begin{align*}
\text{do } i &= 1, N \\
... \\
PUSH(j) \\
j &= j+1 \\
... \\
PUSH(j) \\
j &= j+2 \\
... \\
end \ do
\end{align*}
\]

⇒ Obviously, we mustn’t store \textit{j}!
Some related questions

- Detection and expansion of Induction Variables, to make a loop parallel.
- Forward recomputation (Recompute-All reverse AD)
- Pointer arithmetic, i.e. index \(j \) can be replaced by a pointer.
- Avoiding storage of control flow decisions.
Elementary tactics, to be combined

- **inversion** of address computation:
 \[i = j + k + 2 \] can be inversed for \(j \) given \(i \) and \(k \), or for \(k \) given \(i \) and \(j \), (Any use of an address can be helpful for inversion!)

- **forward address recomputation:**
 \[i = j + k + 2 \] can recompute \(i \) given \(j \) and \(k \),

- when everything else fails, **storage** is still an option!
Scheduling inversion of address computations

Reversing the original order does not work!

<table>
<thead>
<tr>
<th>Orig. loop:</th>
<th>wrong backward sweep:</th>
</tr>
</thead>
<tbody>
<tr>
<td>j = 3</td>
<td>.</td>
</tr>
<tr>
<td>do while(j<100)</td>
<td>3,? 6,4</td>
</tr>
<tr>
<td>k = j+1</td>
<td>3,4 6,7</td>
</tr>
<tr>
<td>j = k+2</td>
<td>6,4 9,7</td>
</tr>
<tr>
<td>S(j,k)</td>
<td>6,4 9,7</td>
</tr>
<tr>
<td>end do</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>do while(j>=5)</td>
</tr>
<tr>
<td></td>
<td>k = j-2</td>
</tr>
<tr>
<td></td>
<td>S(j,k)</td>
</tr>
<tr>
<td></td>
<td>j = k-1</td>
</tr>
<tr>
<td></td>
<td>end do</td>
</tr>
<tr>
<td></td>
<td>9,7 6,7</td>
</tr>
<tr>
<td></td>
<td>9,7 6,7</td>
</tr>
<tr>
<td></td>
<td>9,7 6,4</td>
</tr>
<tr>
<td></td>
<td>6,7 3,4</td>
</tr>
</tbody>
</table>

Find a correct scheduling of control reversal and adjoint statements!

Utke, Naumann, Hascoet (ANL, RWTH, INRIA)
Move *tokens* representing active values on the DDG:

\begin{verbatim}
 do while(j>=5)
 S(j,k)
 j = k-1
 k = j-2
 end do
\end{verbatim}
Data-Dependence Cycles

If forward recomputation is not an option, looking for SCC’s and cycles of true dependences and invertible value dependences is a good idea.

If forward recomputation is an option, then we must play the “token game” on the data-dependence graph of the loop. Problem becomes combinatorial!

- prefer nodes that can be recomputed by inversion
- else compute nodes that can be recomputed forward
- when blocked, use storage for one node (. . . but which one is best?)
do while(...)
 l = i-j-3
 m = l+3
 i = l+2
 j = j+m+4
 i = i+j+1
end do
do while(...)
 l = i-j-3
 m = l+3
 i = l+2
 j = j+m+4
 i = i+j+1
end do
do while(...)
 l = i-j-3
 m = l+3
 i = l+2
 j = j+m+4
 i = i+j+1
end do
Example

```
  do while(...)
    l = i-j-3
    m = l+3
    i = l+2
    j = j+m+4
    i = i+j+1
  end do
```

```
  do while(...)
    i = i-j-1
```

Utke, Naumann, Hascoet (ANL, RWTH, INRIA)
Rev. Address Comp.
Aachen 8 / 1
do while(...)
l = i-j-3
m = l+3
i = l+2
j = j+m+4
i = i+j+1
end do

\[
\begin{align*}
\text{do while(...)} & \quad \text{do while(...)} \\
i = i-j-1 & \quad i = i-j-1 \\
l = i-2 & \\
m = l+3 & \\
j = j-m-4 & \\
i = l+j+3 &
\end{align*}
\]
Example

```
do while (...)  
  l = i - j - 3  
  m = l + 3  
  i = l + 2  
  j = j + m + 4  
  i = i + j + 1  
end do
```

```
  i  
    j  
      l

  i  
    j  
      m

  i  
    j

  i  
    j
```

```
do while (...)  
  i = i - j - 1  
  l = i - 2  
  m = l + 3  
  j = j - m - 4  
  i = l + j + 3  
end do
```

Utke, Naumann, Hascoet (ANL, RWTH, INRIA)
Rev. Address Comp. Aachen 8 / 1
do while(...)
 l = i-j-3
 m = l+3
 i = l+2
 j = j+m+4
 i = i+j+1
end do

do while(...)
 i = i-j-1
 l = i-2
do while(...)
 l = i-j-3
 m = l+3
 i = l+2
 j = j+m+4
 i = i+j+1
end do

do while(...)
 i = i-j-1
 l = i-2
 m = l+3

do while(...)
l = i-j-3
m = l+3
i = l+2
j = j+m+4
i = i+j+1
end do

do while(...)
i = i-j-1
l = i-2
m = l+3
Example

\[
\begin{align*}
\text{do while(...)} & \quad \text{do while(...)} \\
\quad l &= i-j-3 & \quad i &= i-j-1 \\
\quad m &= l+3 & \quad l &= i-2 \\
\quad i &= l+2 & \quad m &= l+3 \\
\quad j &= j+m+4 & \quad j &= j-m-4 \\
\quad i &= i+j+1 & \\
\text{end do} & \quad \text{end do}
\end{align*}
\]
Example

\[
\text{do while(...)}
\]

\[
l = i-j-3
\]

\[
m = l+3
\]

\[
i = l+2
\]

\[
j = j+m+4
\]

\[
i = i+j+1
\]

\[
\text{end do}
\]
do while(...)
 l = i-j-3
 m = l+3
 i = l+2
 j = j+m+4
 i = i+j+1
end do

dc while(...)
 i = i-j-1
 l = i-2
 m = l+3
 j = j-m-4
 i = 1+j+3

Utke, Naumann, Hascoet (ANL, RWTH, INRIA)
Rev. Address Comp.
Aachen 8 / 1
Example

do while(...)
 l = i-j-3
 m = l+3
 i = l+2
 j = j+m+4
 i = i+j+1
end do

Utke, Naumann, Hascoet (ANL, RWTH, INRIA)
Rev. Address Comp. Aachen 8 / 1
Many open questions...

- Data-Dependence graphs may become too large: need **hierarchical** methods that don’t lose too much detail.
- What is the **complexity** of the search for the inversion/recomputation/storage schedule?
- When in a blocked state, which is the **best node to store**?
- **Aliasing** blurs the way tokens can move up and down **true** dependences.