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The AD and CSC Communities

The computational graph (Bauer, 1974) opens the door for many
combinatorial problems in AD, and yet researchers outside the AD
community are not familar with them.

The AD research community has organized since 1991, and the
combinatorial scientific computing (CSC) community has organized
since 2004.

Hovland, Naumann, Walther, Utke, Lyons, and others from AD have
been interacting with the CSC community since its inception.

This talk tells a part of this story, and looks forward to even more
fruitful interactions.
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Overview

An Example of the Partnership:
The CSCAPES Institute

Describing the Partnership:
Combinatorics (Coloring) in AD

Strengthening the Partnership:
A Way Forward
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Accelerator Design RF Gun, SLAC

Green Energy ITER
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Scientific Discovery thru’ Advanced
Computing II

Office of Science, U.S. Dept. of Energy, 2006-2011

Sciences

Fusion, Accelerator Design, Cosmology, Quantum Chromodynamics,
Climate, Groundwater, Materials, Life Sciences

Enabling Technologies

Applied Mathematics, Computer Science, Visualization, Data
Management

ET teams collaborating with Science Application teams to harness
petascale computing in simulations

$ 90 Million per year, 30+ projects, 70+ institutions

Involve computation at the beginning of a scientific research project,
rather than as an afterthought.
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Scope of CSCAPES

Computational Science Application

Automatic Differentiation

Coloring

Data Migration

Elimination Matching Partitioning Ordering

Optimization Linear Solver Eigen Solver

Task Scheduling Load Balancing Performance Improvement

Scientific Computing Tool HPC Task Combinatorial Problem

Research; Dissemination; Education; Outreach
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CSCAPES Institute: Personnel

Purdue (Old Dominion): Alex Pothen, Assefaw Gebremedhin, Florin
Dobrian, Mahantesh Halappanavar, Brandon Hill, Min Huang, Duc
Nguyen

Sandia: Erik Boman, Karen Devine, Bruce Hendrickson, Cederic
Chevalier, Michael Wolfe

Argonne: Paul Hovland, Boyana Norris, Jean Utke, Ilya Safro,
Andrew Lyons

Ohio State: Umit Catalyurek, Doruk Bozdag

Colorado State: Michelle Mills Strout

Other Collaborators: Andrea Walther, Uwe Naumann, Fredrik Manne,
Yoshi Kawajiri, Larry Biegler
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Combinatorics in AD

Computational graph (Bauer, 1974)

Graph transformations

Vertex, edge, face elimination (Griewank, Forth, Pryce, Tadjouddine,
Naumann, Utke...)

Graph coloring (Coleman, More, Steihaug, Hossain, Verma, ...)

Checkpoint placement in reverse mode (Griewank, Walther, ...)

. . .
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Coloring in parallel processing

A distance-1 coloring of G = (V ,E ) is

a mapping φ : V → {1, 2, . . . , q} s.t.
φ(u) 6= φ(v) whenever (u, v) ∈ E
a partitioning of V into q independent sets

The objective is to minimize q

Distance-1 coloring is used to discover
concurrency in parallel scientific computing.
Examples:

iterative methods for sparse linear systems
(Jones & Plassmann, 94)
adaptive mesh refinement
preconditioners
(Saad, 96; Hysom & Pothen, 01)
eigenvalue computation (Manne, 98)
sparse tiling (Strout et al, 02)
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Coloring in automatic differentiation: context

Procedure SparseCompute(F : Rn → Rm)

S1. Determine the sparsity structure of the derivative (first or second)
matrix A ∈ Rm×n of the function F

S2. Obtain a seed matrix S ∈ {0, 1}n×q with the smallest q

S3. Compute the numerical values of the entries of
the compressed matrix B = AS ∈ Rm×q

S4. Recover the numerical values of the entries of A from B

The seed matrix S partitions the columns of A:

sjk =

{
1 iff column aj belongs to group k,

0 otherwise.

It is obtained using an appropriate coloring on the graph of A.
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An archetypal model for direct methods
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Structurally orthogonal partition of matrix A equivalent to:

Distance-2 coloring of the adjacency graph Ga(A) = (V , E)
when A is symmetric (McCormick, 1983)

Partial distance-2 coloring of the bipartite graph Gb(A) = (V1, V2, E)
when A is nonsymmetric (GMP, 2005)

Distance-1 coloring of the appropriate square graph (Coleman and Moré, 1983)
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An accurate model for direct Hessian computation
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Symmetrically orthogonal partition: whenever hij 6= 0

hj only column in a group with nonzero at row i or
hi only column in a group with nonzero at row j

Star coloring: a vertex coloring φ of Ga(H) s.t.

φ is a distance-1 coloring and
every path on 4 vertices (P4) uses at least 3 colors

SymOP equivalent to star coloring (Coleman and Moré, 84)
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An accurate model for Hessian computation via substitution
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h11 h12 + h17 0
h21 + h23 + h25 h22 0
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h10,10 h10,4 + h10,9 0

1CCCCCCCCCCCCCCA
Substitutable partition: whenever hij 6= 0

hj in a group where all nonzeros in row i are ordered before hij or
hi in a group where all nonzeros in row j are ordered before hij

Acyclic coloring: a vertex coloring φ of Ga(H) s.t.

φ is a distance-1 coloring and
every cycle uses at least 3 colors

Substitutable partition equivalent to acyclic coloring (Coleman and Cai, 86)
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Overview of coloring models in derivative computation

General sparsity pattern:
unidirectional partition bidirectional partition

Jacobian distance-2 coloring star bicoloring Direct
Hessian star coloring NA Direct

(restricted star coloring)
Jacobian NA acyclic bicoloring Substitution
Hessian acyclic coloring NA Substitution

(triangular coloring)

Nonsym A Gb(A) = (V1,V2,E )
Sym A G (A) = (V ,E )

Regular sparsity pattern (discretization of structured grids):

Formula-based coloring (Goldfarb and Toint, 1984)

Hierarchical coloring (Hovland, 2007)

Alex Pothen (Purdue) AD and Combinatorics 16 / 34



Outline

1 The CSCAPES Institute

2 Combinatorics in AD
Coloring Models
Sequential algorithms
Case studies
Parallel algorithms
Summary

3 The Way Forward

Alex Pothen (Purdue) AD and Combinatorics 17 / 34



Complexity and Algorithms

Distance-k, star, and acyclic coloring are NP-hard
(they are also hard to approximate)

A greedy heuristic usually gives a good solution
Greedy(G = (V ,E ))

Let v1, v2, . . . , vn be an ordering of V
for i = 1 to n do

determine colors forbidden to vi

assign vi the smallest permissible color
end-for

For distance-k coloring, Greedy can be implemented to run
in O(ndk) time, where dk is the average degree-k

We have developed O(nd2)-time heuristic algorithms for
star and acyclic coloring
Key idea: exploit the structure of two-colored induced subgraphs
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A new acyclic coloring heuristic algorithm

v

v

v

v

v

v

Algorithm (Input: G = (V ,E )):
for each v ∈ V

1 Choose color for v

forbid colors used by neighbors N(v) of v
forbid colors leading to two-colored cycles

∀ tree T incident on v , if v adj to ≥ 2 vertices of same color,
forbid the other color in T

2 Update collection of two-colored trees (merge if necessary)

Time: O(|V |d2 · α) Space: O(|E |)
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Number of colors

Theorem: For every chordal graph G = (V ,E )

ω(G ) = χ1(G ) = χa(G ) ≤ β(G ) + 1

χs(G ) ≤ χ2(G ) = ω(G 2) ≤ min {2β(G ) + 1, |V |}

All inequalities become equalities when G is a band graph.

Experimental results:

ρ, ρ 10, 10.98 20, 20.99
star acyclic star acyclic

banded 11 6 21 11
random 21 – 24 9 – 11 50 – 56 18 – 19

Observed results for banded matrices are optimal.
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Coloring in automatic differentiation: context

Procedure SparseCompute(F : Rn → Rm)

S1. Determine the sparsity structure of the derivative (first or second)
matrix A ∈ Rm×n of the function F

S2. Obtain a seed matrix S ∈ {0, 1}n×q with the smallest q

S3. Compute the numerical values of the entries of
the compressed matrix B = AS ∈ Rm×q

S4. Recover the numerical values of the entries of A from B

S1: Sparsity Detection
S2: Coloring
S3: Computation of Compressed Matrices
S4: Recovery of derivative matrix elements
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Experiments using ADOL-C

Efficacy of the four-step scheme tested in two case studies
1 Jacobian computation in a Simulated Moving Bed process

(chromatography) Walther AD08 talk
2 Hessian computation in an optimal electric power flow problem

Experiments showed
technique enabled cheap Jacobian/Hessian computation
where dense computation is infeasible
observed results for each step matched analytical results
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Parallelizing greedy coloring

Desired task: parallelize Greedy such that

speedup is Θ(p)
number of colors used is roughly same as in serial

A difficult task since Greedy is inherently sequential

For D1 coloring, several approaches based on
Luby’s parallel algorithm for maximal independent set exist

Some drawbacks:

no actual parallel implementation
many more colors than a serial implementation
poor parallel speedup on unstructured graphs
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(Relaxed) Partitioning applied to greedy
coloring

Basic features of the algorithm:

exploits features of data distribution

distinguishes between interior and boundary vertices

proceeds in rounds, each having two phases:

tentative coloring
conflict detection

tentative coloring phase organized in supersteps

each processor communicates only after coloring a subset of its
assigned vertices using currently available information
(infrequent, coarse-grain communication)

randomization used in resolving conflicts
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A Framework for Parallel Distance-1 Coloring

Framework(G = (V , E), s)
Partition V into V1, V2, . . . , Vp using a graph partitioner
(Processor Pi owns (and colors) Vi , and stores edges Ei incident on Vi .)
On each processor Pi , i ∈ I = {1, . . . , p}

while uncolored vertices remain do (rounds)
Partition uncolored vertices into subsets of size s

(supersteps for tentative coloring)
for each superstep do

Tentatively color vertices in the superstep
Send colors of boundary vtxs to relevant processors
Receive color information from relevant processors

Wait until all incoming messages are received
Detect conflicts for boundary vertices
Uncolor incorrectly colored boundary vertices



Specializations of Framework

Framework can be specialized along several axes:

1 Color selection strategies:
First Fit: search for smallest color starts at 1 on each processor

Staggered FF: search for smallest color starts from different “bases”

2 Coloring order:
interior vertices can be colored before, after, or interleaved with

boundary vertices

3 Local vertex ordering:
vertices on each processor can be ordered

using various degree-based techniques

4 Supersteps:
can be run synchronously or asynchronously

5 Inter-processor communication:
can be customized or broadcast-based
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Lessons learned from experiments

Good parameter configuration for
large-size (millions of edges) graphs:

moderately unstructured graphs
(e.g. a typical application graph):

1 a superstep size s in the order of 1000
2 asynchronous supersteps
3 a coloring order in which interior vertices appear either

strictly before or strictly after boundary vertices
4 First Fit color choice strategy
5 customized inter-processor communication

highly unstructured (e.g. random) graphs:

s in the order of 100
items 2 to 4 same as for moderately unstructured graphs
broadcast-based communication
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A sample experimental result: strong scalability
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Algorithm FBAC on Itanium 2 cluster.

Alex Pothen (Purdue) AD and Combinatorics 29 / 34



Summary

Current accomplishments:

Designed and implemented new sequential algorithms
for distance-k , star, acyclic, and other coloring problems.
C++ implementations and ordering functions assembled in a package
called ColPack.
Integrated parts of ColPack with the AD tool ADOL-C.
Developed parallel algorithms for distance-1, distance-2, and
restricted star coloring, available through the Zoltan package.

Planned activities:

Integrate coloring software with tools in OpenAD.
Develop parallel coloring algorithms for tera- and peta-scale
computation.
Collaborate with chemical engineers to solve coupled PDEs with cyclic
boundary conditions from liquid chromatographic and gaseous
separations.
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More about CSCAPES, SciDAC

www.cscapes.org, www.scidac.org

CSCAPES article in SciDAC Review, Fall 2007, pp. 26–35.

CSCAPES Institute seminars using remote conferencing systems

SIAM Workshop on CSC 2009, Oct. 29-31, 2009 (Monterey Beach
CA)

Oberwolfach Workshop on CSC, Feb. 2009

Annual SciDAC conferences, SciDAC Review (online magazine)

DEISA: Distributed European Infrastructure for Supercomputer
Applications.
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More about AD and CSC Communities

Need to increase participation in our communities. Both have steep
learning curves as price of admission. Planned survey by Gebremdhin
and Naumann on Combinatorics in AD.

Strengthen existing collaborations in CSCAPES Institute and
elsewhere.

Develop robust AD software efficient for many core architectures.

Collaborate with researchers working on tera- and peta-scale
simulations: intensive computations, large data sets, deep memory
hierarchies, and non-uniform communication costs: opportunities for
combinatorial algorithms.
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Further reading

Hendrickson and Pothen,
CSC: The enabling power of discrete algorithms in computational science.
LNCS, 4395, pp. 260-280, 2007.

Gebremedhin, Manne and Pothen.
SIAM Review 47(4):629–705, 2005.

Gebremedhin, Tarafdar, Manne and Pothen.
New Acyclic and Star Coloring Algorithms with Application to Computing Hessians.
SIAM J. Sci. Comput. 29:1042–1072, 2007.

Gebremedhin, Pothen and Walther.
Exploiting Sparsity in Jacobian Computation via Coloring and AD:
A Case Study in a Simulated Moving Bed Process.
Fifth International Conference on AD, Bonn, Germany, Aug 2008, to appear. 12 pp.

Gebremedhin, Pothen, Tarafdar and Walther.
Efficient Computation of Sparse Hessians using Coloring and AD.
INFORMS Journal on Computing, to appear. 30 pp.

Bozdag, Gebremedhin, Manne, Boman and Catalyurek.
A Framework for Scalable Greedy Coloring on Distributed-memory Parallel Computers.

J. Parallel Distrib. Comput. 68(4):515–535, 2008.
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