Simple implementation and examples for piecewise linearization with abs-normal form

Koichi KUBOTA

Chuo University

AD2016
Outline

Introduction
- ANF: Abs-normal form
- rewrite function

Implementation notes
- Listing up the abs operations with value zero
- Computation of derivatives
- Local minimization
 - Branch and bound search

Examples
- Simple case
- Max-min of many planes
 - Local minimal point $n = 32$ (64 planes, $s = 63$)
 - Not local minimal point $n = 16$ (32 planes, $s = 31$)

Conclusions and further work
Previous tools

- Most AD tools can treat the derivative of $|x|$ at $x \neq 0$
- But they can **not** do its derivative at $x = 0$.
 - (The directed derivatives can be computed.)
- Some may display alerts and may compute an element of the subgradient...

Yaad: Yet another AD with piecewise linearization

- computation of piecewise linearization including abs, min, max at a critical point with abs-normal form (ANF given by A.Griewank[2013])
- reverse/forward accumulation of derivatives
- checking the first order local optimality with Linear Programming
Abs-normal form [Griewank2013]

Absolute Normal Form (ANF) is introduced by A. Griewank (2013). ANF can treat $|x|$ at $x = 0$ systematically by means of the directional derivatives.

Original function and evaluation procedure

$y = f(x)$ \hspace{1cm} ($f : \mathbb{R}^n \rightarrow \mathbb{R}^m$)

\[
\begin{align*}
 w_1 &= \varphi_1(x_1, \cdots, x_n) \\
 w_2 &= \varphi_2(x_1, \cdots, x_n, w_1) \\
 &\vdots \\
 w_k &= \varphi_k(x_1, \cdots, x_n, w_1, \cdots, w_{k-1}) \\
 &\vdots \\
 w_{\ell-m} &= \varphi_{\ell-m}(x_1, \cdots, x_n, w_1, \cdots, w_{\ell-m-1}) \\
 y_1 &= w_{\ell-m+1} = \varphi_{\ell-m+1}(x_1, \cdots, x_n, w_1, \cdots, w_{\ell-m}) \\
 &\vdots \\
 y_m &= w_{\ell} = \varphi_{\ell}(x_1, \cdots, x_n, w_1, \cdots, w_{\ell-m})
\end{align*}
\]
Extract absolute operations with zero arguments

Note that the values of the following $w_{\beta_1}, \ldots, w_{\beta_s}$ are zero!

\[
\begin{align*}
\ldots \\
\varphi_{\alpha_1}(x_1, \ldots, x_n, w_1, \ldots, w_{\alpha_1 - 1}) &= |w_{\beta_1}| \\
\ldots \\
\varphi_{\alpha_2}(x_1, \ldots, x_n, w_1, \ldots, w_{\beta_2 - 1}) &= |w_{\beta_2}| \\
\ldots \\
\varphi_{\alpha_s}(x_1, \ldots, x_n, w_1, \ldots, w_{\beta_s - 1}) &= |w_{\beta_s}| \\
\ldots
\end{align*}
\]
Rename variables

- results: $w_{\alpha_1} \Rightarrow v_1, \cdots, w_{\alpha_s} \Rightarrow v_s$
- arguments: $w_{\beta_1} \Rightarrow u_1, \cdots, w_{\beta_s} \Rightarrow u_s$

\[
\begin{align*}
v_1 &= |u_1| \\
 & \vdots \\
v_s &= |u_s|
\end{align*}
\]
Define functions: $g : \mathbb{R}^n \times \mathbb{R}^s \to \mathbb{R}^s$, $h : \mathbb{R}^n \times \mathbb{R}^s \to \mathbb{R}^m$

$u = g(x, v)$

$v = \text{abs}(u)$ componentwise: $v_k = \text{abs}(u_k) = |u_k|$

$y = h(x, v)$
Example 1: $f(x_1, x_2) = \min(|x_1 + x_2|, |x_1 - x_2|)$, where $n = 2$, $m = 1$, $\min(a, b) = (a + b - |a - b|) \times 0.5$

Consider the case: $x_1 = 0.0$ and $x_2 = 0.0$ ($s = 3$)

$w_1 = x_1 + x_2$
$w_2 = \text{abs}(w_1)$
$w_3 = x_1 - x_2$
$w_4 = \text{abs}(w_3)$
$w_5 = w_2 - w_4$
$w_6 = \text{abs}(w_5)$
$w_7 = w_2 + w_4 - w_6$
y = $w_8 = w_7 \times 0.5$

$u_1 \equiv w_1,$ $u_2 \equiv w_3,$ $u_3 \equiv w_5,$
$v_1 \equiv w_2 = |u_1|,$ $v_2 \equiv w_4 = |u_2|,$ $v_3 \equiv w_6 = |u_3|.$
Example 1 (mod): \(f(x_1, x_2) = \min(|x_1 + x_2|, |x_1 - x_2|) \), where \(n = 2, m = 1, \min(a, b) = (a + b - |a - b|) \times 0.5 \)

Consider the case: \(x_1 = 0.1 \) and \(x_2 = 0.1 \) (\(s = 1 \))

\[
\begin{align*}
 w_1 & = x_1 + x_2 \\
 w_2 & = \text{abs}(w_1) \\
 w_3 & = x_1 - x_2 \\
 w_4 & = \text{abs}(w_3) \\
 w_5 & = w_2 - w_4 \\
 w_6 & = \text{abs}(w_5) \\
 w_7 & = w_2 + w_4 - w_6 \\
 y & = w_8 = w_7 \times 0.5
\end{align*}
\]

\[
\begin{align*}
 u_1 & \equiv w_3, \\
 v_1 & \equiv w_4 = |u_1|.
\end{align*}
\]
Rewrite the function

Example 1: \(x_1 = 0.0 \) and \(x_2 = 0.0 \)

\[
\begin{align*}
 u_1 &= x_1 + x_2 & u_1 &= x_1 + x_2 \quad ([1]) \\
 v_1 &= \text{abs}(u_1) & u_2 &= x_1 - x_2 \quad ([3]) \\
 u_2 &= x_1 - x_2 & u_3 &= v_1 - v_2 \quad ([5]) \\
 v_2 &= \text{abs}(u_2) & v_1 &= \text{abs}(u_1) \quad ([2]) \\
 u_3 &= v_1 - v_2 & v_2 &= \text{abs}(u_2) \quad ([4]) \\
 v_3 &= \text{abs}(u_3) & v_3 &= \text{abs}(u_3) \quad ([6]) \\
 w_7 &= v_1 + v_2 - v_3 & w_7 &= v_1 + v_2 - v_3 \quad ([7]) \\
 y &= w_8 = w_7 \times 0.5 & y &= w_8 = w_7 \times 0.5 \quad ([8])
\end{align*}
\]

\[
\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \mathbf{g}(x_1, x_2, v_1, v_2, v_3) = \begin{pmatrix} x_1 + x_2 \\ x_1 - x_2 \\ v_1 - v_2 \end{pmatrix} \\
\]

\[
y = \mathbf{h}(x_1, x_2, v_1, v_2, v_3) = 0.5v_1 + 0.5v_2 - 0.5v_3
\]
Note that $u_k = 0.0$ for $k = 1, 2, 3$.

rewrite for linearization

$$
\begin{align*}
\Delta u_1 &= \Delta x_1 + \Delta x_2 \\
\Delta v_1 &= \text{abs}(\Delta u_1) = \text{sign}(\Delta u_1) \cdot \Delta u_1 = \sigma_1 \Delta u_1 \\
\Delta u_2 &= \Delta x_1 - \Delta x_2 \\
\Delta v_2 &= \text{abs}(\Delta u_2) = \sigma_2 \Delta u_2 \\
\Delta u_3 &= \Delta v_1 - \Delta v_2 \\
\Delta v_3 &= \text{abs}(\Delta u_3) = \sigma_3 \Delta u_3 \\
\Delta w_7 &= \Delta v_1 + \Delta v_2 - \Delta v_3 \\
\Delta y &= \Delta w_8 &= \Delta w_7 \times 0.5 \\
\sigma_k &= \begin{cases}
1 & \text{if } \Delta u_k > 0 \\
-1 & \text{if } \Delta u_k < 0
\end{cases}
\end{align*}
$$
Rewrite procedure for linearization

Note that $u_k = 0.0$ for $k = 1, 2, 3$.

rewrite for linearization

\[
\begin{align*}
\Delta u_1 &= \Delta x_1 + \Delta x_2 \\
\Delta u_2 &= \Delta x_1 - \Delta x_2 \\
\Delta u_3 &= \Delta v_1 - \Delta v_2 \\
\Delta v_1 &= \text{abs}(\Delta u_1) = \sigma_1 \Delta u_1 \\
\Delta v_2 &= \text{abs}(\Delta u_2) = \sigma_2 \Delta u_2 \\
\Delta v_3 &= \text{abs}(\Delta u_3) = \sigma_3 \Delta u_3 \\
\Delta w_7 &= \Delta v_1 + \Delta v_2 - \Delta v_3 \\
\Delta y &= \Delta w_8 = \Delta w_7 \times 0.5
\end{align*}
\]

\[
\sigma_k = \begin{cases}
1 & \text{if } \Delta u_k > 0 \\
-1 & \text{if } \Delta u_k < 0
\end{cases}
\]
Differentiation of Absolute function [Griewank2013]

Absolute function

\[v = |u| = \text{abs}(u) = \text{sign}(u) \cdot u \]

\[v + \Delta v = |u + \Delta u| \]
\[= \text{sign}(u + \Delta u) \cdot (u + \Delta u) \]
\[= \text{sign}(u + \Delta u) \cdot \Delta u + \text{sign}(u + \Delta u) \cdot u \]

\[\Delta v = \text{sign}(u + \Delta u) \cdot \Delta u + (\text{sign}(u + \Delta u) - \text{sign}(u)) \cdot u \]

when \(u = 0 \)

\[\Delta v = \text{sign}(\Delta u) \cdot \Delta u = |\Delta u| \]
Now we can compute the directed derivatives for given Δx:

$$y = f(x)$$

$$y + \Delta y = f(x + \Delta x) = f(x) + \frac{\partial f}{\partial x} \Delta x + \cdots$$

rewrite the above as follows:

$$\Delta u = \frac{\partial g}{\partial x} \Delta x + \frac{\partial g}{\partial v} \Delta v,$$

$$\Delta v = \text{sign}(u + \Delta u) \cdot \Delta u + (\text{sign}(u + \Delta u) - \text{sign}(u)) \cdot u,$$

$$= |\Delta u| \text{ when all elements of } u \text{ are zeros}$$

$$\Delta y = \frac{\partial h}{\partial x} \Delta x + \frac{\partial h}{\partial v} \Delta v.$$

Note that when we give a value of direction Δx, we get the values of Δu, Δv and Δy. Moreover, when we assume the sign of Δu firstly, we get the coefficients of Δv and Δy with respect to linear combinations of $\Delta x = (\Delta x_1, \ldots, \Delta x_n)$.
We check the above concepts with C++ operator overload program for generating computational graph G.

For a scalar function $f(x)$, we check the first order optimality condition (minimization or maximization) by solving LP (Linear Programming) repeatedly.

- The number of solving different LP is $O(2^s)$ (naively count)
- Reduce the number by branch and bound.
Computation of derivatives

implementation outline

The partial derivatives $\frac{\partial g}{\partial x}$, $\frac{\partial g}{\partial v}$, $\frac{\partial h}{\partial x}$, $\frac{\partial h}{\partial v}$ are computed as follows.

(i) Make a computational graph G of f as well as the sets of renamed nodes, i.e., $V = \{v_1, \ldots, v_s\}$ and $U = \{u_1, \ldots, u_s\}$.

(ii) For each node v in V, change the node type of v from the type that is the result of abs() operation to the type that is the new independent variable.

(iii) Compute $\frac{\partial g_k}{\partial x_j}$ ($j = 1, \ldots, n$) and $\frac{\partial g_k}{\partial v_\ell}$ ($\ell = 1, \ldots, s$) by reverse mode (or forward mode) for all $u_k \in U$ ($k = 1, \ldots, s$). That is, after the topological sort with the depth first search from u_k, the adjoint values are computed for all $w < u_k \in G$.

(iv) Compute $\frac{\partial h}{\partial x_j}$ ($j = 1, \ldots, n$) and $\frac{\partial h}{\partial v_\ell}$ ($\ell = 1, \ldots, s$) by reverse mode from the node corresponding to $y = f(x)$.
$\Delta u = (\partial g/\partial x) \Delta x + (\partial g/\partial v) \Delta v$

$\Delta v = \Sigma \Delta u,$

where $\Sigma \equiv \text{diag}(\sigma_1, \ldots, \sigma_s)$ is a diagonal matrix.

We can eliminate Δv and get the explicit form Δu with respect to Δx, that is,

$\Delta u = (I - (\partial g/\partial v) \Sigma)^{-1} (\partial g/\partial x) \Delta x.$

Thus the directed derivative $\Delta y = (\partial f/\partial x) \Delta x$ is computed by

$\Delta y = (\partial h/\partial x) \Delta x + (\partial h/\partial v) \sum (I - (\partial g/\partial v) \Sigma)^{-1} (\partial g/\partial x) \Delta x. \quad (1)$

$U \equiv (\partial g/\partial x), \ L \equiv (\partial g/\partial v), \ J \equiv (\partial h/\partial x)$ and $V \equiv (\partial h/\partial v)$.

$\Delta y = (J + V \Sigma (I - L \Sigma)^{-1} U) \Delta x$
Check the local minimum of the linearization

One of key advantages of the abs-normal form is that the coefficients of a directional derivative Δy can be computed with the sign of the Δu. The sign of the Δu is computed by the value of the direction Δx.

Usually
Given Δx, compute $y = f(x) \Rightarrow y + \Delta y = f(x + \Delta x)$.

Usually (Abs-normal form)
Given Δx, compute $u = g(x, v)$, $v = |u| \Rightarrow y = h(x, v)$
Σ is determined by Δx
$\Delta u = U\Delta x, \Delta v = \Sigma\Delta u \Rightarrow \Delta y = J\Delta x + V\Delta v$

Fix Σ first (Abs-normal form)
Fix Σ, compute $\Delta y = J\Delta x + V\Delta v$
Check the existence of the direction Δx that realizes the given Σ.
The k-th diagonal element of Σ, σ_k, indicates the sign of Δu_k.

Check the existence (or finding the subdomain)

- Compute Δu_k as a linear combination of Δx $(k = 1, \cdots, s)$
 - $\Delta u_k > 0$ for $\sigma_k = 1$, or, $\Delta u_k < 0$ for $\sigma_k = -1$
- Construct an $s \times n$ matrix A whose k-th row is Δu_k (if $\sigma_k = 1$) or $-\Delta u_k$ (if $\sigma_k = -1$)
- Check the feasibility of an LP:
 \[
 \min_{\Delta x} \Delta y \text{ s.t. } A\Delta x > 0 \text{ and } -\infty < \Delta x_j < \infty
 \]
 - if it is feasible, there is a direction Δx that realizes all the sign of Δu_k’s equal to σ_k’s.
 - if it is not feasible, there is no direction that realizes Σ.
Check the first order condition of locally minimum of the linearization

There are 2^s combinations of the values of σ_k's.

Thus, we can compute a direction that gives $\Delta y < 0$ (or $\Delta y > 0$) after solving LP 2^s times.

When we want to know locally minimum (maximum), we check there are no direction that gives $\Delta y < 0$ ($\Delta y > 0$).
(i) Fix a combination of the diagonal values of $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_s) = \text{diag}(\pm 1, \ldots, \pm 1)$.

(ii) Compute $\Delta u = (I - L\Sigma)^{-1} U \Delta x$ and $\Delta y = (J + V\Sigma(I - L\Sigma)^{-1}U) \Delta x$. The coefficients of $\Delta x_1, \ldots, \Delta x_n$ of the above Δy may give one of the generalized gradients.

(iii) Check the direction Δx that gives the directed derivative Δy by feasibility of $A\Delta x > 0$ with LP.

(iv) Finally, for each matrix A corresponding to all the possible diagonal matrices Σ, we can check the infeasibility of $\Delta y < 0$ and $A\Delta x > 0$. When there are no feasible solutions the given point x is local minimum or stationary point of the linearization.
Branch and bound search

- The number of solving LP is at most 2^s.
- Let a $k \times n$ matrix \bar{A} denote submatrix of A ($k \leq s$).
 - When $A\Delta x > 0$ is feasible, any subsystem of $\bar{A}\Delta x > 0$ should be feasible,
 - When $\bar{A}\Delta x > 0$ is infeasible, its extended system $A\Delta x > 0$ should be infeasible.
- Construct matrix A from the first row to sth row with step by step (g_k indicates the k-th component of $g(x, v)$)

$$
\Delta u_1 = \frac{\partial g_1}{\partial x} \Delta x
$$

$$
\Delta u_2 = \frac{\partial g_2}{\partial x} \Delta x + \frac{\partial g_2}{\partial v_1} \Delta v_1 = \frac{\partial g_2}{\partial x} \Delta x + \frac{\partial g_2}{\partial v_1} \sigma_1 \Delta u_1
$$

\[\vdots \]

$$
\Delta u_k = \frac{\partial g_k}{\partial x} \Delta x + \sum_{j=1}^{k-1} \frac{\partial g_k}{\partial v_j} \sigma_j \Delta u_j
$$
Construct sub matrix $A^{(k)}$

$$
\Delta u_k = \frac{\partial g_k}{\partial x} \Delta x + \sum_{j=1}^{k-1} \frac{\partial g_k}{\partial v_j} \cdot \sigma_j \cdot \Delta u_j \quad (k = 1, \ldots, s).
$$

After the computation of Δu_k in the explicit form with respect to Δx under the selected sign combination of $\sigma_1, \ldots, \sigma_k$, we have $\Delta u_1, \ldots, \Delta u_k$.

Then, we can check the feasibility of $A^{(k)} \Delta x > 0$, where the coefficient matrix is defined by $A^{(k)} \equiv \begin{pmatrix}
\sigma_1 \Delta u_1 \\
\vdots \\
\sigma_k \Delta u_k
\end{pmatrix}$.

- When $A^{(k)} \Delta x > 0$ is feasible, we should check $A^{(k+1)} \Delta x > 0$ is feasible or infeasible for $\sigma_{k+1} = 1$ and $\sigma_{k+1} = -1$.
- When it is infeasible, there are no feasible solution with the current $\sigma_1, \ldots, \sigma_k$. Try the next combination.
Example

Again, \(f(x_1, x_2) = \min(|x_1 + x_2|, |x_1 - x_2|) \), \(x_1 = 0.0 \) and \(x_2 = 0.0 \).

Abs-normal form

\[
\Delta u = \begin{pmatrix}
\Delta u_1 \\
\Delta u_2 \\
\Delta u_3
\end{pmatrix} = \begin{pmatrix}
\Delta x_1 + \Delta x_2 \\
\Delta x_1 - \Delta x_2 \\
\Delta v_1 - \Delta v_2
\end{pmatrix}, \quad \begin{pmatrix}
\Delta v_1 \\
\Delta v_2 \\
\Delta v_3
\end{pmatrix} = \begin{pmatrix}
\sigma_1 \Delta u_1 \\
\sigma_2 \Delta u_2 \\
\sigma_3 \Delta u_3
\end{pmatrix},
\]

\(\Delta y = 0.5 * (\Delta v_1 + \Delta v_2 - \Delta v_3) \)

Partial derivatives

With the forward AD technique, we have

\[
U = (\partial g / \partial x) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ 0 & 0 \end{pmatrix}, \quad L = (\partial g / \partial v) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & -1 & 0 \end{pmatrix},
\]

\[
J = (\partial h / \partial x) = (0 \ 0), \quad V = (\partial h / \partial v) = (0.5 \ 0.5 \ -0.5).
\]
Explicit Δy form with respect to Δx

Case: $\Delta u_1 > 0$, $\Delta u_2 > 0$ and $\Delta u_3 > 0$

$$\Sigma = \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \Delta v_1 = \Delta u_1, \Delta v_2 = \Delta u_2, \Delta v_3 = \Delta u_3.$$

The conditions, $\Delta u_1 = \Delta x_1 + \Delta x_2 > 0$, $\Delta u_2 = \Delta x_1 - \Delta x_2 > 0$ and $\Delta u_3 = \Delta v_1 - \Delta v_2 = \Delta u_1 - \Delta u_2 = 2\Delta x_2 > 0$, hold for $\Delta x_1 > \Delta x_2 > 0$.

$$\Delta y = (J + V\Sigma(I - L\Sigma)^{-1}U)\Delta x$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ 0 & 0 \end{pmatrix} \Delta x$$

$$= \begin{pmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ 1 & -1 \end{pmatrix} \Delta x = \Delta x_1 - \Delta x_2.$$
Figures

![Graph 1: 3D plot of min(abs(y-x), abs(y+x))](image)

![Graph 2: 2D plot with axes Δx₁ and Δx₂](image)
Generalized gradient

Table: The generalized gradient Δy

<table>
<thead>
<tr>
<th>No.</th>
<th>Δu_1</th>
<th>Δu_2</th>
<th>Δu_3</th>
<th>σ_1</th>
<th>σ_2</th>
<th>σ_3</th>
<th>Domain</th>
<th>Δy</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>> 0</td>
<td>> 0</td>
<td>> 0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$\Delta x_1 > \Delta x_2 > 0$</td>
<td>$\Delta x_1 - \Delta x_2$</td>
</tr>
<tr>
<td>(2)</td>
<td>< 0</td>
<td>> 0</td>
<td>> 0</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>$0 > \Delta x_1 > \Delta x_2$</td>
<td>$\Delta x_1 - \Delta x_2$</td>
</tr>
<tr>
<td>(3)</td>
<td>> 0</td>
<td>< 0</td>
<td>> 0</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>$0 < \Delta x_1 < \Delta x_2$</td>
<td>$-\Delta x_1 + \Delta x_2$</td>
</tr>
<tr>
<td>(4)</td>
<td>< 0</td>
<td>< 0</td>
<td>> 0</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>$\Delta x_1 < \Delta x_2 < 0$</td>
<td>$-\Delta x_1 + \Delta x_2$</td>
</tr>
<tr>
<td>(5)</td>
<td>> 0</td>
<td>> 0</td>
<td>< 0</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>$\Delta x_1 > -\Delta x_2 > 0$</td>
<td>$\Delta x_1 + \Delta x_2$</td>
</tr>
<tr>
<td>(6)</td>
<td>< 0</td>
<td>> 0</td>
<td>< 0</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>$0 < \Delta x_1 < -\Delta x_2$</td>
<td>$-\Delta x_1 - \Delta x_2$</td>
</tr>
<tr>
<td>(7)</td>
<td>> 0</td>
<td>< 0</td>
<td>< 0</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>$0 < -\Delta x_1 < \Delta x_2$</td>
<td>$\Delta x_1 + \Delta x_2$</td>
</tr>
<tr>
<td>(8)</td>
<td>< 0</td>
<td>< 0</td>
<td>< 0</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>$-\Delta x_1 > \Delta x_2 > 0$</td>
<td>$-\Delta x_1 - \Delta x_2$</td>
</tr>
</tbody>
</table>
Max-min of planes

Scalar function $f(x_1, x_2)$ is defined with $2n$ planes as

$$f(x_1, x_2) \equiv \max_{0 \leq \ell < n} \min(a_{2\ell}x_1 + b_{2\ell}x_2, a_{2\ell+1}x_1 + b_{2\ell+1}x_2).$$

The kth plane $a_kx_1 + b_kx_2$ ($k = 0, \ldots, 2n - 1$) is defined by three points $(p_k, q_k, r_k), (p_{k+1}, q_{k+1}, r_{k+1})$ and $(0, 0, 0)$, where $(p_k, q_k) = (\cos(\frac{\pi}{n}k), \sin(\frac{\pi}{n}k))$ and arbitrarily given r_k $(p_{2n}, q_{2n}, r_{2n}) \equiv (p_0, q_0, r_0)$.

Figure: Origin is local minimal point
$n = 32$, $r_{2k} = 0.3$, $r_{2k+1} = 1.0$ ($k = 0, \ldots, 31$).
Locally minimal point at $(0, 0)$.
There are 63 absolute operations whose results are zero, $s = 63$.
The number of solving LP is $2^s = 2^{63} \approx 10^{19}$
the total number of solving LP is only 10^{340} with the branch and bound search.
Computational time is about 7 seconds (Ubuntu 14.04LTS, VMware Fusion 7.1.3, Macbook pro core i7).

Figure: Origin is local minimal point
Example 2-2

\[n = 16, \quad r_{26} = -0.1, \quad r_{2k} = 0.3 \ (k = 0, \ldots, 12, 14, 15), \text{ and } \]
\[r_{2k+1} = 1.0 \ (k = 0, \ldots, 15). \]
The origin (0, 0) is not locally minimal.
There are directions along with which the value of \(f \) is decreased.
There are 31 absolute operations whose results are zero, \(s = 31 \).
The number of solving LP is \(2^s = 2^{31} \approx 2 \times 10^9 \)
the total number of solving LP is only 2222 with the branch and bound search.

Figure: Origin is not local minimal point
Conclusion:

- Simple implementation of piecewise linearization with “abs-normal-form” in C++
- An efficient way to check the local minimal point with branch and bound technique,
- Two dimensional examples that may have $2n$ planes were shown, where the number of solving LP is reduced: $2^{63} \rightarrow 10340$, $2^{31} \rightarrow 2222$.

Future work:

- More practical experiments and the investigation of the optimal topological order for the branch and bound are needed
- the investigation of the higher derivatives with absolute operations and effects of numerical computational errors.